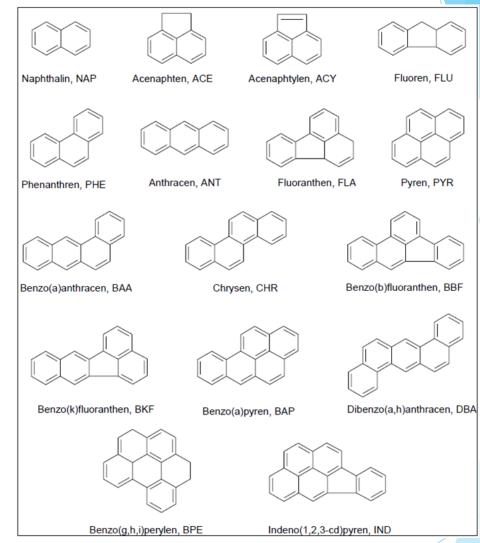
PAK

= polyzyklische aromatischeKohlenwasserstoffe

Dipl.-Chem. Heiner Mokroß, Sachverständigenbüro Mokroß

15.5.2019

Wo kommen PAK vor?

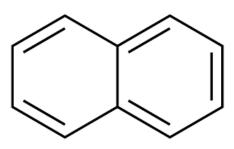

- PAK sind in Teerprodukten enthalten
- Teerprodukte sind im Baubereich vielfach eingesetzt worden:
 - Straßenbau
 - Bauwerksabdichtung
 - Holz- und Bautenschutz
 - Klebstoffe für Parkett und Holzpflaster u.v.m.
- ► PAK sind geruchsintensiv und gesundheitsschädlich (Krebsrisiko)
- PAK-Belastung möglich durch
 - Staub
 - Raumluft

Was sind PAK?

Kohlenwasserstoffe

aus mindestens zwei miteinander verbundenen Benzolringen (teilweise ersetzt durch Fünfring)

Stoffgruppe aus über hundert verschiedenen Einzelstoffen

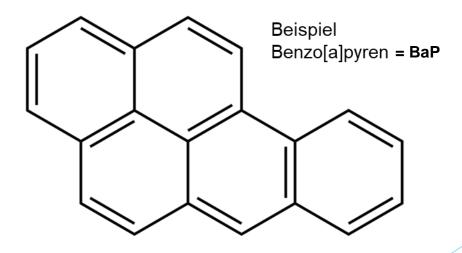

16 EPA-PAK, Liste der Priority Pollutants (1977)

Unterteilung der PAK

Niedermolekulare PAK

(2 oder 3 Ringe, bi- und trizyklisch):

überwiegend gasförmig, flüchtig (Raumluft)



Beispiel Naphthalin

Höhermolekulare PAK

(4 und mehr Ringe):

überwiegend partikelgebunden (Staub)

PAK-Hinweise des DIBt

(DIBt-Mitteilungen 4/2000)

"Hinweise für die Bewertung und Maßnahmen zur Verminderung der PAK-Belastung durch Parkettböden mit Teerklebstoffen in Gebäuden"

>gesundheitliche Bewertung auf Grundlage Hausstaub (BaP-Gehalt)

Verminderung der PAK-Belastung durch:

- Verschließen von Fugen, Neuversiegelung des Parkettbodens
- Abdichten mit einem neuen Bodenbelag,
- Entfernen des Parkettbodens und Absperren des Teerklebstoffs,
- Entfernen des Parkettbodens und des Teerklebstoffs.

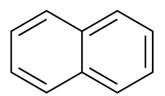
Erfolgskontrolle:

Nach ordnungsgemäßer Durchführung ... genügt eine ausreichende Reinigung des Raums.

Messtechnische Kontrollen, z. B. Staubanalysen, sind nicht erforderlich.

Warum Messungen der flüchtigen PAK's?

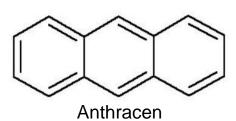
(für intakte, geschlossene Parkettoberflächen)

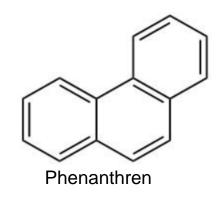

- Umfängliche gesundheitliche Bewertung auf Grundlage von Staubanalysen nicht möglich.
- staubdicht verbaute Teerprodukte k\u00f6nnen zu einer erheblichen PAK-Belastung der Innenraumluft f\u00fchren.
- > Überschreitungen von PAK-Richtwerten für die Innenraumluft sind auch dann möglich, wenn Staubanalysen gemäß PAK-Hinweisen keinen Handlungsbedarf anzeigen.

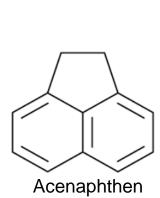
➤ Eine belastbare Aussage ist nur über die Raumluftmessung von flüchtigen PAK's möglich → Richtwerte des AIR

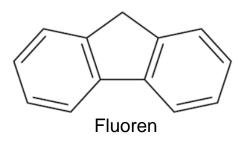
Flüchtige PAK's

Bicyclische PAK gemäß AIR






Naphthalin



Tricyclische PAK gemäß AIR

Richtwerte RW I und RW II des AIR für Naphthalin und Naphthalin-ähnliche Verbindungen in der Innenraumluft

Bundesgesundheitsbl 2013 · 56:1448-1459

Stoff / Stoffgruppe	RW I	RW II
Naphthalin	10 μg/m³	30 μg/m³
Summe bizyklische PAK	10 μg/m³ *	30 μg/m³ *
Summe bi- und trizyklische PAK	10 μg/m³ *	30 μg/m³ *

Geruchsschwellenwert
Naphthalin: 2,3 μg/m³!
(Lisow et al., 2015)

* vorläufig

Hinweis: Angaben der Richtwerte in der Originalliteratur in mg/m³ (RW I: 0,01 mg/m³, RW II: 0,03 mg/m³)

Richtwerte RW I und RW II des AIR

(AIR: Ausschuss für Innenraumrichtwerte, früher Ad-hoc-Arbeitsgruppe der Innenraumlufthygiene-Kommission des UBA)

Handreichung des AIR

"Zur Überprüfung der Über- oder Unterschreitung eines

Richtwertes hat gemäß dem Basisschema des AIR eine

Kontrollmessung unter Nutzungsbedingungen

als Grundlage für die Veranlassung weiterer Maßnahmen

zu erfolgen."

"Beurteilung von Innenraumluftkontaminationen mittels Referenz- und Richtwerten", Handreichung der Ad-hoc-Arbeitsgruppe der Innenraumlufthygienekommission des Umweltbundesamtes und der Obersten Landesgesundheitsbehörden, Bundesgesundheitsbl - Gesundheitsforsch - Gesundheitsschutz 2007, 50:990-1005, Springer Medizin Verlag

Nutzungsbedingungen an Schulen Lüftung gemäß Empfehlungen des UBA

Wie soll gelüftet werden?

Grundsätzlich durch Fensterlüftung. <u>Dabei sind in den Unterrichtsräumen vor Unterrichtsbeginn und mindestens in jeder Pause</u> (auch und gerade in den Fünfminutenpausen, in denen die Schüler in der Regel in der Klasse bleiben!) <u>alle Fenster über die gesamte Pausenzeit weit zu öffnen</u> (Stoßlüftung, Querlüftung). Eine Kipplüftung ist weitgehend wirkungslos, da durch sie kaum Luft ausgetauscht wird.

Leitfaden für die Innenraumhygiene in Schulgebäuden UBA, 2008

Raumluftmessung

gemäß VDI-Richtlinie 4300 Blatt 1 und DIN EN ISO 16000-5

standardisierte Lüftungsbedingungen

Ausgleichsbedingungen

kompletter *Luftwechsel am Abend vor der Messung*

Türen und Fenster vor der Messung mindestens 8 h verschlossen

Nutzungsbedingungen

Lüftung vor Beginn der Messung

während der Probenahmezeit nach 45 min eine erneute Stosslüftung für jeweils 5 min

(gemäß Empfehlung des UBA für Schulen)

Ergebnisse von PAK-Raumluftmessungen GS An den Linden

Messung 27.02.2019

Ausgleichsbedingungen

Raum	_	Messwerte [µg/m³]		
	[°C]	Naphthalin	Σ bizykl. PAK	Σ bi- + tricyclische PAK
EG Raum B1-05	21.3	14,5	18,1	18,3
Richtwert RW I		10	10	10
Richtwert RW II		30	30	30

Messung 18.04.2019 Nutzungsbedingungen

Raum	_	Messwerte [µg/m³]			
	T [°C]	Naphthalin	Σ bizykl. PAK	Σ bi- + tricyclische PAK	
EG Raum B1-05	20,4	6,4	8,3	8,5	
1.0G Raum B2-02	20	2,9	3,8	3,9	
EG Raum C1-02	19	3,8	4,9	5,1	
Richtwert RW I		10	10	10	
Richtwert RW	' II	30	30	30	